Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Coelho, Fabrício de Oliveira
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Marcato, André Luís Marques
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Barbosa, Bruno Henrique Groenner
,
Honório, Leonardo de Mello
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Engenharia Elétrica
|
Departamento: |
Faculdade de Engenharia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/6497
|
Resumo: |
Esse trabalho apresenta uma metodologia para a concepção de missões autônomas utilizando robôs móveis com tração diferencial em ambientes internos. As missões consistem em deslocar o robô até uma posição objetivo partindo de uma pose inicial. Para que as missões ocorram com sucesso, são implementados algoritmos de localização e planejamento de caminhos. Para localização, foi utilizado Filtro de Kalman Estendido (do inglês, Extended Kalman Filter EKF) para fundir a odometria com visão computacional. A visão é responsável por encontrar marcadores artificiais conhecidos como Ar codes que são alocados no ambiente. O planejamento é caracterizado por uma forma híbrida que corresponde a união de um método deliberativo e reativo. No Planejamento deliberativo, foi proposto e utilizado o método Direct-DRRT* cuja base é oriunda do RRT (Rapidly Exploring Random Tree). Além do RRT, esse planejador também apresenta características de dois outros métodos já presentes na literatura: RRT* e DRRT. O planejador deliberativo enviará para o reativo um conjunto de sub-objetivos que conecta a posição em que o robô se encontra até o objetivo final. O planejamento reativo é aplicado durante a missão e é o responsável pelo desvio de obstáculos dinâmicos que não foram mapeados. No Reativo, é utilizado o método dos Campos Potenciais Artificiais (CPA), que também se comporta como o controlador do robô durante a navegação. Para encontrar os obstáculos, utilizou-se o sensor de profundidade Asus Xtion, pois, a partir das imagens geradas por esse sensor, é possível encontrar as distâncias que os bloqueios se encontram. As informações desse sensor também será de grande valia na atualização do mapa. O sistema é integrado através da framework ROS (Robot Operating System). Todos os algoritmos foram implementados por meio da linguagem de programação Python. Os resultados do trabalho foram apresentados por meio do simulador Gazebo e testes práticos a partir da plataforma P3DX. Foram analisados o comportamento do robô em alguns problemas que podem ocorrer durante a navegação, como o sequestro e aparecimento mínimos locais. Ao final desse trabalho, apresentou-se a melhoria nos resultados do planejador de caminhos Direct-DRRT*, onde foi possível constatar a queda no tempo para obter um caminho, a quantidade de iterações, de nós e do comprimento do caminho em comparação aos outros métodos. No que tange à localização, essa dissertação obteve significativas melhoras comparado com o método que utiliza somente a odometria. Além desse resultado, esse trabalho também obteve sucesso em apresentar uma solução para a implementação de missões autônomas. |