Espaços de Moduli de complexos quadráticos e de suas superfícies singulares

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Cruz, Juan Antonio Pacheco lattes
Orientador(a): Ribeiro, Flaviana Andréa lattes
Banca de defesa: Avritzer, Dan lattes, Cruz, Joana Darc Antonia Santos da lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Mestrado Acadêmico em Matemática
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/4696
Resumo: Um complexo de retas quadrático, ou simplesmente um complexo quadrático, é um conjunto de retas do espaço projetivo Pn (n = 3, no nosso caso) que satisfazem uma equação quadrática. Um complexo quadrático também pode ser considerado como um feixe de quádricas e portanto tem um símbolo de Segre bem definido. Sabe-se que as retas de um dado complexo, passando por um ponto p ∈P3, formam em geral um cone quadrático. Os pontos nos quais esses cones são a união de dois planos formam uma superfície em P3, chamada Superfície Singular do complexo. O objetivo desse trabalho é, fixado um símbolo de Segre, construir o espaço de Moduli dos complexos quadráticos, o espaço de Moduli das superfícies singulares desses complexos e então estudar a relação entre esse espaços.