Métodos da média periódico e não-periódico para equações diferenciais funcionais em medida com impulsos e equações dinâmicas funcionais com impulsos
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Mestrado Acadêmico em Matemática
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://doi.org/10.34019/ufjf/di/2022/00086 https://repositorio.ufjf.br/jspui/handle/ufjf/14089 |
Resumo: | A área de equações diferenciais ocupa um papel central na matemática. De um ponto de vista teórico, é um campo que intersecta diversas outras áreas distintas e as conecta. Do ponto de vista aplicado, é uma área com inúmeras aplicações nas ciências naturais e na modelagem computacional. Devido a isso, essa área atrai muitos pesquisadores e há grande produção acadêmica nesse campo. O objetivo desse trabalho é estudar certos tipos de equações diferenciais funcionais em medida e de equações dinâmicas funcionais em escalas temporais, além de métodos da média para estas equações. Para isso, estudamos a integral de Kurzweil e suas propriedades, as quais foram desenvolvidas na década de 50 para a resolução de problemas dentro da área de EDO, e as escalas temporais, que foram introduzidas em 1988, na tese de doutorado de Stefan Hilger, com o intuito de unificar as análises discreta e contínua. Usamos dessas teorias para relacionar equações diferenciais funcionais com equações dinâmicas e para provarmos resultados sobre ambas. Por fim, usamos desses resultados e relações para o estudo do método da média, o qual nos permite aproximar as soluções dessas equações por soluções de equações mais simples. |