Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Pereira, Ana Amélia de Souza
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Barbosa, Helio José Corrêa
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Fonseca, Leonardo Goliatt da
,
Gonçalves, Luciana Brugiolo
,
Santos, Andre Gustavo dos
,
Silva, Eduardo Krempser da
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Modelagem Computacional
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/3639
|
Resumo: |
O sequenciamento da produção é um processo importante de tomada de decisão usado nas indústrias a fim de alocar tarefas aos recursos. Dada a relevância desse tipo de problema, a pesquisa em programação da produção faz-se necessária. Este trabalho envolve o processo de otimização nos seguintes problemas: máquina única, máquinas paralelas idênticas, máquinas paralelas idênticas com release time, máquinas paralelas não relacionadas com setup time dependente da sequência e das máquinas, e flow shop flexível com setup time dependente da sequência e dos estágios. Além disso, múltiplos e conflitantes objetivos devem ser otimizados ao mesmo tempo na programação de produção, e a literatura vem mostrando avanço nesse sentido. O presente trabalho analisa os objetivos comumente adotados e propõe um conjunto de pares de objetivos. Análise de correlação e árvore de agregação são utilizadas aqui para indicar as possibilidades de agregação entre os objetivos conflitantes. Meta-heurísticas são comumente adotadas para resolver os problemas de escalonamento abordados neste trabalho e duas delas, o Non-dominated Sorting Genetic Algorithm II (NSGA-II) e a Presa Predador (PP), são aplicados aos problemas multiobjetivo propostos a fim de estudar suas adequações aos novos casos. O NSGA-II é um dos Algoritmos Genéticos mais utilizados em problemas de escalonamento. A PP é uma abordagem evolutiva recente para problemas de programação da produção, cada predador é responsável por tratar um único objetivo. Uma generalização para a técnica PP em que os predadores consideram de forma ponderada ambos os objetivos é também proposta. Adicionalmente, a influência da adoção de busca local sobre essas técnicas é analisada. Experimentos computacionais adotando hipervolume como métrica de desempenho foram conduzidos visando avaliar as técnicas computacionais consideradas neste trabalho e suas variantes. |