Influência do ambiente enzimático na reatividade de complexos anticâncer de ouro(iii)

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Sánchez Delgado, Giset Yuliana lattes
Orientador(a): Santos, Hélio Ferreira dos lattes
Banca de defesa: Nascimento Junior, Clebio Soares lattes, Scarpellini, Marciela lattes, Andrade, Gustavo Fernandes Souza lattes, Costa, Luiz Antônio Sodré lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Química
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
DFT
Área do conhecimento CNPq:
Link de acesso: https://doi.org/10.34019/ufjf/te/2021/00050
https://repositorio.ufjf.br/jspui/handle/ufjf/13404
Resumo: Complexos de ouro(III) são compostos promissores para a quimioterapia do câncer com mecanismos de ação que envolvem etapas dependentes de sua estabilidade redox. A escolha do ligante é crucial para ajustar a reatividade e atividade biológica destes mesmos. Fosfinas terciárias (PR3) estão entre os ligantes auxiliares mais usados nestes compostos. A estabilidade redox dos complexos [AuIII(C^N^C)PR3] + (C^N^C=2,6-difenilpiridina) (A) e [AuIII(N^N^N)PR3] 3+ (N^N^N=2,2′:6′,2″-terpiridina) (B) foi investigada para um conjunto de 41 fosfinas, usando o potencial padrão de redução (Eo ) para o sistema eletroquímico Au3+→Au1+ como referência. Para os compostos (A), Eo variou numa faixa de 829 mV com valores negativos; para os compostos (B) os valores de Eo foram positivos numa faixa de 507 mV. As fosfinas com alto impacto estérico diminuem a estabilidade do complexo apesar de serem fortes doadores σ. Propriedades estéricas e eletrônicas foram usadas para construir modelos quantitativos de relação estrutura-propriedade (QSPR – Quantitative Structure-Properties Relationship), sendo o volume buried o principal fator na estabilidade dos compostos estudados. No caso dos compostos (B), o impacto estérico é mais pronunciado nas espécies de ouro(I). A capacidade de doação de elétrons das fosfinas possui maior peso na estabilidade redox dos compostos (B) em relação aos compostos (A). Posteriormente, quinze compostos com diferentes ligantes bidentados (bident) e tridentados (trident), mantendo fixo o cloreto como ligante auxiliar ([AuIII(bident)Cl2] 3+n (bident = do tipo N^N e C^N) e [AuIII(trident)Cl]3+n (trident = do tipo N^N^N, C^N^N, C^C^N, C^N^C e N^C^N)), foram estudados. Os valores de Eo calculados abrangeram uma ampla faixa de 2600 mV. Os compostos do tipo [AuIII(C^C^N)Cl] mostraram a maior estabilidade com Eo de aproximadamente -1,60 V em solução aquosa. A análise de orbitais naturais e o E o indicaram que a inclusão da ligação Au-C é menos eficiente para a estabilização do composto na posição lateral comparada à central. O posicionamento consecutivo de dois ligantes piridina desfavorece a redução dos complexos de ouro(III). No caso do composto [AuIII(C^N^N)Cl], o ligante bipy (N^N) se comporta como um ligante redox não-inocente, participando ativamente do processo de redução sem uma mudança estrutural significativa após redução. Os resultados reportados ajudam na previsão da estabilidade redox de complexos de ouro(III), a qual afeta sua reatividade química frente a importantes alvos biológicos. Finalmente, modelos moleculares foram propostos para o aduto [AuIII(C^N^C)(SHCysR)]+ , com a fração [AuIII(C^N^C)]+ ligada ao resíduo Cys498 da TrxR, que representa o produto 6 da primeira reação de troca de ligante. O composto original [AuIII(C^N^C)Cl] apresentou E° = -1,20 V, aumentado para ⁓ +0,30 V nos modelos estudados do aduto, mostrando que Eo é principalmente influenciado pela troca do ligante auxiliar (por exemplo, Clpor S-R) com um pequeno efeito da estrutura da enzima. Além disso, foi abordada reação final de substituição C^N^C/Cys497, a qual se mostrou dependente do estado de protonação da Cys497. Estudos termodinâmicos e cinéticos sugerem que esta reação é exergônica, exibindo uma barreira de energia de 20,2 kcal mol-1 . A transferência completa do íon Au para o sítio ativo da enzima levaria à inibição total da sua atividade, causando a morte das células cancerígenas.