Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Novais, Edson Bruno
 |
Orientador(a): |
Borges, Carlos Cristiano Hasenclever
 |
Banca de defesa: |
Pamplin, Paulo Augusto Zaitune
,
Augusto, Douglas Adriano
,
Fonseca Neto, Raul
,
Barbosa, Ciro de Barros
 |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Modelagem Computacional
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/2568
|
Resumo: |
Considerando o sucesso dos dispositivos móveis e a evolução de suas tecnologias, o estudo de Odontocetos em tempo real é uma possibilidade emergente. Apesar desta evolução, a análise de grandes volumes de dados por algoritmos complexos requer considerável esforço computacional. A coleta de dados de Odontocetos é executada em ambiente marinho com recursos limitados, o que reduz o potencial de pesquisa. Sendo assim, a escolha dos algoritmos para a criação de um Fluxo de Trabalho deve manter um balanço entre a eficiência computacional e a eficácia de detecção. Esta tese tem como objetivo propor um modelo de Fluxo de Trabalho eficiente para o Monitoramento Acústico Passivo. Para tal, um Fluxo de Trabalho de referência comumente utilizado em campo por pesquisadores foi utilizado como base, sendo inserido uma nova etapa de pré-processamento das informações capturadas. A etapa de detecção, foco deste trabalho devido sua aplicabilidade e notável impacto nas próximas etapas, é responsável por analisar os sinais acústicos recebidos, filtrando boa parte dos dados. A próxima etapa trata da condensação dos dados de forma a facilitar a transferência destes para localidades remotas. Em sequência tem-se a etapa de identificação das informações recebidas a partir da etapa anterior. Por fim, a última etapa baseia-se em componentes de software para o estudo das informações relevantes adquiridas. A aplicação da etapa de detecção no Fluxo de Trabalho de referência apresentou um desempenho satisfatório acarretando em uma redução de 96,52% do volume total de dados a serem armazenados e processados, facilitando que informações relevantes da captura sejam identificadas e distribuídas online para estações de pesquisa remotas. |