Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Oliveira, Viviane Fátima de
 |
Orientador(a): |
Oliveira, Ana Tércia Monteiro
 |
Banca de defesa: |
Gomes, José Barbosa
,
Carneiro, Mário Jorge Dias
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Mestrado Profissional em Matemática (PROFMAT)
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/11843
|
Resumo: |
Neste trabalho, apresentamos uma exposição detalhada sobre a dinâmica de uma família de funções quadráticas indexada por um parâmetro µ. Mais especificamente, nosso objeto de estudo é a família de funções fµ(x) = µx(1 − x) com µ ∈ (1, 3) ∪ (4, +∞). Abordaremos conceitos básicos da Teoria de Sistemas Dinâmicos, como: ponto fixo, atrator ou repulsor, pontos periódicos e órbitas de um ponto. O estudo será dividido em três casos, de acordo com a variação do parâmetro µ: (Caso I) 1 < µ ≤ 2, (Caso II) 2 < µ < 3 e (Caso III) µ > 4. Veremos a influência do parâmetro sobre o comportamento das órbitas que permanecem no intervalo [0, 1]. Isto nos levará a concluir quão ricas e complexas podem ser as funções quadráticas na perspectiva dos Sistemas Dinâmicos. Por fim, trazemos como proposta pedagógica um Caderno de Atividades, direcionado ao estudante do 1 o ano do Ensino Médio, que tem como objetivo abordar de forma investigativa essa família de funções quadráticas sob o olhar da dinâmica. |