Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Ferreira, Eliza Maria
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Takahashi, Lucy Tiemi
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
D'Afonseca, Luis Alberto
,
Sabeti, Mehran
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora
|
Programa de Pós-Graduação: |
Mestrado Acadêmico em Matemática
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/403
|
Resumo: |
O objetivo deste trabalho é estudar algumas aplicações da teoria de controle ótimo para problemas biológicos. Assim, apresentamos inicialmente o estudo de dois modelos diferentes: “Optimal Control of Biological Invasions in Lake Network”, proposto por Potapov et al. [13], e “Simulating Optimal Vaccination Times during Cholera Outbreaks” proposto por Modnak et al. [9]. Os modelos têm suas dinâmicas baseadas em equações diferenciais ordinárias e neles foi minimizado um funcional, com uma única e com várias restrições, respectivamente. No primeiro modelo a teoria de controle ótimo é usada para minimizar os custos com a prevenção juntamente com os custos gerados pelos danos da invasão biológica em estudo, e no segundo modelo aplica-se o controle ótimo para minimizar os custos da vacinação e tratamento dos indivíduos infectados durante um surto de cólera. Com base nos modelos propostos por Vieira e Takahashi em “A Sobrevivência do Vírus varicelazoster”, [16], e por Shulgin et al. em “Pulse vaccination strategy in the SIR epidemic model”, [14], propomos um modelo matemático que considera a vacinação da população como uma estratégia de controle da varicela. Nós usamos a teoria de controle ótimo para definir as condições necessárias para minimizar os custos da vacinação e tratamento dos indivíduos infectados com catapora ou com herpes zoster. A dinâmica é baseada em equações diferenciais ordinárias, que são as restrições sob as quais queremos minimizar o funcional utilizando a teoria de controle ótimo. |