Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Enes, Karen Braga
 |
Orientador(a): |
Fonseca Neto, Raul
 |
Banca de defesa: |
Bernardino, Heder Soares
,
Braga, Antônio de Pádua
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/4883
|
Resumo: |
Recentemente, abordagens baseadas em ensemble de classificadores têm sido bastante exploradas por serem uma alternativa eficaz para a construção de classificadores mais acurados. A melhoria da capacidade de generalização de um ensemble está diretamente relacionada à acurácia individual e à diversidade de seus componentes. Este trabalho apresenta duas contribuições principais: um método ensemble gerado pela combinação de Perceptrons balanceados e um método para geração de uma hipótese equivalente ao voto majoritário de um ensemble. Para o método ensemble, os componentes são selecionados por medidas de diversidade, que inclui a introdução de uma medida de dissimilaridade, e avaliados segundo a média e o voto majoritário das soluções. No caso de voto majoritário, o teste de novas amostras deve ser realizado perante todas as hipóteses geradas. O método para geração da hipótese equivalente é utilizado para reduzir o custo desse teste. Essa hipótese é obtida a partir de uma estratégia iterativa de redução do espaço de versões. Um estudo experimental foi conduzido para avaliação dos métodos propostos. Os resultados mostram que os métodos propostos são capazes de superar, na maior parte dos casos, outros algoritmos testados como o SVM e o AdaBoost. Ao avaliar o método de redução do espaço de versões, os resultados obtidos mostram a equivalência da hipótese gerada com a votação de um ensemble de Perceptrons balanceados. |