Predição de dados estruturados utilizando a formulação Perceptron com aplicação em planejamento de caminhos

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Coelho, Maurício Archanjo Nunes lattes
Orientador(a): Borges, Carlos Cristiano Hasenclever lattes
Banca de defesa: Barreto, André da Motta Salles lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Modelagem Computacional
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/3597
Resumo: O problema de planejamento de caminhos apresenta diversas subáreas, muitas das quais já extensamente abordadas na literatura. Uma dessas áreas em especial é a de determinação de caminhos, os algoritmos empregados para a solução deste problema dependem que os custos estipulados para os ambientes ou mapas sejam confiáveis. A dificuldade está justamente na definição dos custos referentes a cada tipo de área ou terreno nos mapas a serem examinados. Como se pode observar, o problema mencionado inclui a dificuldade em se determinar qual o custo de cada característica relevante presente no mapa, bem como os custos de suas possíveis combinações. A proposta deste trabalho é mostrar como é feita a predição desses custos em novos ambientes tendo como base a predição de dados estruturados definindo um aprendizado funcional entre domínios de entrada e saída, estruturados e arbitrários. O problema de aprendizado em questão é normalmente formulado como um problema de otimização convexa de máxima margem bastante similar a formulação de máquinas de vetores suporte multi-classe. Como técnica de solução realizou-se a implementação do algoritmo MMP (Maximum Margin Planning) (RATLIFF; BAGNELL; ZINKEVICH, 2006). Como contribuição, desenvolveu-se e implementou-se dois algoritmos alternativos, o primeiro denominado Perceptron Estruturado e o segundo Perceptron Estruturado com Margem, ambos os métodos de relaxação baseados na formulação do Perceptron. Os mesmos foram analisados e comparados. Posteriormente temos a exploração dos ambientes por um agente inteligente utilizando técnicas de aprendizado por reforço. Tornando todo o processo, desde a análise do ambiente e descoberta de custos, até sua exploração e planejamento do caminho, um completo processo de aprendizado.