[en] REDUCING TEACHER-STUDENT INTERACTIONS BETWEEN TWO NEURAL NETWORKS
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=45743&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=45743&idi=2 http://doi.org/10.17771/PUCRio.acad.45743 |
Resumo: | [pt] Propagação de conhecimento é um dos pilares da evolução humana. Nossas descobertas são baseadas em conhecimentos já existentes, construídas em cima deles e então se tornam a fundação para a próxima geração de aprendizado. No ramo de Inteligência Artificial, existe o interesse em replicar esse aspecto da natureza humana em máquinas. Criando um primeiro modelo e treinando ele nos dados originais, outro modelo pode ser criado e aprender a partir dele ao invés de ter que começar todo o processo do zero. Se for comprovado que esse método é confiável, ele vai permitir várias mudanças na forma que nós abordamos machine learning, em que cada inteligência não será um microcosmo independente. Essa relação entre modelos é batizada de relação Professor-Aluno. Esse trabalho descreve o desenvolvimento de dois modelos distintos e suas capacidades de aprender usando a informação dada em um ao outro. Os experimentos apresentados aqui mostram os resultados desse treino e as diferentes metodologias usadas em busca do cenário ótimo em que esse processo de aprendizado é viável para replicação futura. |