Oxidação controlada e funcionalização de nanotubos de carbono de parede única: uma abordagem experimental e teórica

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Porto, Arthur Barra lattes
Orientador(a): Oliveira, Luiz Fernando Cappa de lattes
Banca de defesa: Silva Júnior, Antônio Marques da lattes, Schiavon, Marco Antônio lattes, Andrade, Gustavo Fernandes Souza lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Química
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/4817
Resumo: O tratamento químico de nanotubos de carbono (NTC) é necessário para aprimorar suas propriedades, aplicações e remover impurezas. O tratamento, com ácidos fortes como H2SO4 e HNO3 tem sido a alternativa mais utilizada. A mistura desses ácidos fortes produz espécies eletrofílica NO2+, íon nitrônio, que é um potencial agente oxidante, cuja concentração depende da proporção da mistura H2SO4:HNO3. Neste trabalho, a interação entre o íon nitrônio e o nanotubo de carbono de camada única (SWCNT, do inglês Single-Walled Carbon Nanotube) foi explorado experimental e computacionalmente. Experimentalmente a solução H2SO4:HNO3 foi analisada em proporções diferentes (1:1, 2:1, 5:2, 3:1, 4:1, 5:1, 6:1, 7:1 e 8:1 v/v) e a concentração de íon nitrônio foi obtida utilizando-se uma curva analítica construída com uma solução padrão de NO2BF4 em H2SO4. Todas as espécies na mistura ácida foram caracterizadas por espectroscopia Raman. Os resultados mostraram que a concentração do íon nitrônio na mistura ácida varia de 0 até 4,53 mol/L. As misturas 2:1, 5:2 e 3:1 foram então utilizadas para a oxidação química de SWCNT por 4, 8 e 12 horas. As amostras finais foram analisadas por espectroscopia Raman, análise termogravimétrica (TG) e espectroscopia de raios X por dispersão de energia (EDS). Dentre os resultados, foram observados por meio da espectroscopia Raman uma alta desordem estrutural no sistema após a oxidação, com significativas mudanças nos modos de respiração radial (RBM), como o desaparecimento de bandas de tubos com pequenos diâmetros, além do aumento dada razão ID/IG de 0,027 para 0,59 em tubos oxidados com a mistura 3:1. As análises TG mostraram um aumento na temperatura de decomposição dos tubos em, pelo menos, 30ºC se comparado às amostras padrão, sugerindo um significativo grau de oxidação. Os resultados de EDS apontaram um aumento considerável na quantidade de oxigênio, passando de 7% para 20%, aumentando com o aumento do tempo de reação e com a concentração do íon nitrônio. Computacionalmente a interação entre o íon nitrônio e o SWCNT foi estudada através de cálculos de mecânica quântica. Foram analisados modelos do tipo armchair (5,5), sendo um tubo perfeito (P) e dois outros contendo defeitos do tipo Stone-Wales (SW) e monovacância (V1) para modelar regiões distintas na superfície do nanotubo. Para os modelos P e SW, o grupo funcional éter (COC) foi obtido como um produto principal, com um epóxido (CCO) encontrado como um intermediário de reação. As barreiras de energia livre de Gibbs foram de 31,7 kcal.mol-1 (P) e 37,8 kcal.mol-1 (SW) em solução aquosa à 298,15 K e 1 atm. O mecanismo envolvendo o modelo V leva à obtenção de uma carbonila (CO) como produto principal, formado espontaneamente através da adsorção do íon NO2+. O mecanismo de alta energia também foi descrito no modelo V, passando por um estado de transição, caracterizado como um anel do tipo oxaziridina. Através deste caminho um grupamento do tipo alcóxido (CO-) é formado inicialmente e reage com um carbono vizinho, produzindo um grupo funcional do tipo éter (COC). A energia livre de Gibbs de ativação foi de 4,5 e 11,2 kcal.mol-1 para primeiro (CO-) e segundo (COC) passos, respectivamente. Os resultados reportados sugerem o início da oxidação em meio ácido através da região de vacância, com primeira oxidação levando a uma carbonila, seguida das reações nos defeitos topológicos (P e SW) na superfície com a formação de um éter (COC) como principal produto.