Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Alvim, Raphael da Silva
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Leitão, Alexandre Amaral
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Dias, Luiz Gustavo
,
Abreu, Heitor Avelino de
,
Pereira, Maria Luiza R. Duarte,
Andrade, Gustavo Fernandes Souza
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Química
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/2320
|
Resumo: |
O agente VX, O-etil metillfosfonotioato de S-2-(diisopropilamino)etila, é um dos principais agentes neurotóxicos e a busca por formas de degrada-lo é consideravelmente importante. Neste trabalho, a hidrólise de um composto organofosforado tipo-VX (metilfosfonotioato de O,S-dimetila, DMPT) pela quimissorção dissociativa na superfície de MgO(001) foi estudada pela teoria do funcional da densidade com condições de contorno periódicas. Um mecanismo de degradação que envolve as reações das moléculas de DMPT e de água foi proposto e investigado em dois tipos de modelos de superfície de MgO(001): terraço e dopada com Al. Conformações, diferenças de energia livre, estados de transição e barreiras de reação foram calculados. Inicialmente, foi verificado que apenas a ligação neurotóxica P-S é quebrada na hidrólise do composto DMPT, que pode ocorrer espontaneamente em todo o intervalo de temperatura analisado (100-600 K). Na quimissorção dissociativa da molécula de DMPT, a formação do intermediário MgO:[PO(CH3)(OCH3)]+[SCH3]− é termodinamicamente menos estável que os produtos de hidrólise a partir da temperatura de aproximadamente 335 K para a superfície dopada com Al, que é muito menor que o mesmo processo calculado no terraço (a partir de 500 K). De acordo com a análise de barreira reacional, a possível reconstituição da ligação P-S não ocorre em ambos modelos de superfície de MgO(001) analisados. Contudo, a barreira de energia eletrônica para a reação de dissociação na superfície dopada com Al é cerca de 49,0 kJ/mol menor do que no terraço. Simultaneamente, o processo de formação dos íons H+ e OH- no terraço de MgO(001) é relevante como a etapa inicial de hidroxilação dessa superfície e faz parte do mecanismo de hidrólise catalisada do composto DMPT. A adsorção de uma, duas e três moléculas de água foram obtidas apenas sobre o terraço de MgO(001), pois sabe-se que as moléculas de água são dissociadas espontaneamente em defeitos pontuais. A variação da energia livre de Gibbs para os processos de adsorção e dissociação foi calculada no intervalo de temperatura de 100-600 K. Os resultados termodinâmicos mostraram que a adsorção de uma única molécula de água não conduz à dissociação. Para o dímero e trímero de moléculas de água, uma molécula se dissocia enquanto que as outras moléculas co-adsorvidas estabilizam as espécies iônicas H+ e OH- sobre a superfície. Nos dois casos, os produtos de dissociação na superfície convergiram para a formação de ligações de hidrogênio entre a hidroxila formada e as moléculas de água. Como consequência dessas interações, a superfície protonada coexiste com os íons hidroxila adsorvidos. As barreiras de energia eletrônica não são grandes o suficiente para desfavorecer a dissociação parcial de duas (23,2 kJ/mol) e três (24,9 kJ/mol) moléculas de água, porque elas seriam facilmente superadas. Portanto, a etapa inicial para a hidrólise no terraço de MgO(001) começa a partir de duas moléculas de água, mas o produto dissociado é mais estável quando existem três moléculas de água quimissorvidas. Em relação à migração dos íons H+ e OH- após a dissociação, as barreiras de energia eletrônica calculadas mostraram que esse processo na superfície de MgO(001) é desfavorável. Assim, os processos de dissociação das moléculas de DMPT e H2O na superfície de MgO(001) devem acontecer em regiões próximas para facilitar a etapa seguinte do mecanismo de reação proposto, que é a recombinação iônica de [PO(CH3)(OCH3)]+, [SCH3]-, HO- e H+ para a subsequente formação dos produtos P1 [HOPO(CH3)(OCH3)] e P2 [HSCH3]. Os produtos P1 e P2 não se acumulam sobre a superfície dopada com Al porque estas moléculas são dessorvidas. Portanto, se comparado com a reação de hidrólise do composto de DMPT, 335 K é uma temperatura ideal a fim de se evitar a acumulação dos produtos sobre os defeitos pontuais analisados, com a consequente dessorção espontânea de P1 e P2 e a reconstituição do MgO na etapa final do processo catalítico. No entanto, os sítios do terraço também podem participar do mecanismo de hidrólise catalisada do composto DMPT a partir de 500 K. Neste trabalho, a superfície de MgO(001) atua como um possível catalisador para a degradação do agente VX, mas com uma maior seletividade dos sítios dopados com Al do que os sítios do terraço. Da mesma forma, estes resultados têm uma variedade de importantes aplicações, bem como uma referência para posteriores estudos da reação do composto VX na superfície de MgO(001) com outros tipos de defeitos ou superfícies. Assim, esses resultados contribuem cientificamente para a área de catálise e superfícies de óxidos na desativação química de agentes neurotóxicos, especialmente os agentes tipo-V. Além disso, o presente trabalho permitirá o desenvolvimento de novas tecnologias para a defesa nacional, a fim de permitir a degradação química desses tipos de compostos sem afetar o meio ambiente. |