Não-comutatividade em um modelo cosmológico com fluido de poeira

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Rodrigues, Luíz Guilherme Rezende lattes
Orientador(a): Oliveira Neto, Gil de lattes
Banca de defesa: Peixoto, Guilherme de Berredo lattes, Silva, Maria de Fátima Alves da lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Física
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/5453
Resumo: Na presente dissertação estudamos um modelo cosmológico clássico não-comutativo com a métrica Friedmann-Robertson-Walker, cujas seções espaciais podem ter curvatura constante positiva (k = 1), negativa (k = —1) ou zero (k = O). O conteúdo material é descrito por um fluido perfeito de poeira. A dinâmica do modelo não-comutativo é descrita no formalismo Hamiltoniano, com o auxílio da formulação ADM e do formalismo variacional de Schutz. O espaço de fase do modelo é dado pelas variáveis a(t) , T (t), Pa(t) e PT(t), em que a(t) é o fator de escala do Universo, T (t) é a coordenada associada ao fluido e Pa(t), PT(t) seus respectivos momentos canonicamente conjugados. Introduzimos a não-comutatividade via parênteses de Poisson. Para estudarmos o modelo, introduzimos transformações de coordenadas que nos levaram a variáveis comutativas, mais um parâmetro não-comutativo ,y. Combinando as equações de Hamilton, obtidas a partir da Hamiltoniana escrita em termos das variáveis comutativas, mais o parâmetro 7, chegamos a uma equação diferencial, de segunda ordem, para o fator de escala a (t) . Tal equação descreve a dinâmica do modelo não-comutativo e depende de vários parâmetros, tais como: 7, k, C e B. Obtivemos soluções analíticas para essa equação. Com as soluções encontradas, estudamos as novas propriedades introduzidas pela não-comutatividade, com o objetivo de obter resultados que auxiliem na explicação da expansão acelerada do Universo. As soluções não-comutativas apresentaram dois parâmetros adicionais -y e B, em comparação com as soluções comutativas correspondentes, além dos parâmetros comuns k e C, este último associado à energia do fluido. Tais parâmetros influenciam de maneira significativa o tipo de comportamento de cada solução. Para determinados valores dos parâmetros algumas soluções podem ser consideradas como possíveis candidatas à explicação da expansão atual do Universo. Dentre esses casos, para k = O, as soluções não-comutativas apresentaram um crescimento exponencial para o infinito, enquanto as soluções comutativas correspondentes apresentaram crescimento polinomial. Para k = —1 ambas as soluções apresentaram o mesmo comportamento qualitativo de expansão para o infinito descrito por funções hiperbólicas. Para k = 1, foram obtidas soluções expansivas que apesar de não descreverem a expansão atual do Universo são importantes, pois, não estão presentes no modelo comutativo correspondente. Tais expansões ocorrem de maneira linear no tempo, mas, de maneira a oscilar entre máximos e mínimos. Buscamos na literatura outro modelo não-comutativo com a finalidade de verificar se maneiras diferentes de introduzir a não-comutatividade levam aos mesmos resultados. Tais comparações resultaram em comportamentos qualitativos bastante diferentes entre tais soluções não-comutativas, uma vez que as equações diferenciais para o fator de escala obtidas, para cada modelo, são diferentes.