Recomendação de desenvolvedores externos para projetos de software baseada na análise de contribuições prévias

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Oliveira Júnior, Marcio Tadeu de lattes
Orientador(a): Villela, Regina Maria Maciel Braga lattes
Banca de defesa: David, José Maria Nazar
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: -
Departamento: ICH – Instituto de Ciências Humanas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/12132
Resumo: A indústria de desenvolvimento de software evoluiu nos últimos anos e novos desafios surgiram. Dentre estas mudanças surgiram os ecossistemas de software, um novo paradigma de desenvolvimento, onde colaboradores externos apoiam a produção de software ao disponibilizar soluções que complementam uma plataforma comum a estes desenvolvedores. Devido à grande diversidade de tecnologias, frameworks e domínios que um ecossistema pode abrigar, a todo momento surgem colaboradores com variados tópicos de conhecimento e habilidades. Entretanto, recrutar colaboradores com as características desejadas se torna um trabalho complexo devido aos diferentes graus de conhecimento e habilidades que cada colaborador tem em suas diversas competências. Diante disso, apresenta-se uma arquitetura de um sistema de recomendação (SR) apoiado por uma ontologia capaz de recomendar colaboradores que tenham mostrado expertise nos tópicos de interesse. Para tanto, o SR utiliza técnicas da área de expertise retrieval para pontuar o grau de aderência dos colaboradores sobre os tópicos de conhecimento representados em uma query. A arquitetura é então capaz de fornecer as informações de contexto da recomendação, ou seja, uma visualização sobre onde pode-se encontrar os tópicos de conhecimento que levaram à recomendação de cada colaborador. Provas de conceito foram realizadas sobre dois ecossistemas de software para verificar a viabilidade da arquitetura, as quais mostraram indícios de que a arquitetura é capaz de realizar recomendações, e ainda oferece informações de contexto que são importantes à tomada de decisão sobre as recomendações realizadas.