Filtragem robusta de SNPs utilizando redes neurais em DNA genômico completo

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Silva, Bruno Zonovelli da lattes
Orientador(a): Borges, Carlos Cristiano Hasenclever lattes
Banca de defesa: Silva, Marcos Vinícius Gualberto Barbosa da lattes, Fonseca Neto, Raul lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Modelagem Computacional
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/3496
Resumo: Com o crescente avanço das plataformas de sequenciamento genômico, surge a necessidade de modelos computacionais capazes de analisar, de forma eficaz, o grande volume de dados disponibilizados. Uma das muitas complexidades, variações e particularidades de um genoma são os polimorfismos de base única (single nucleotide polymorphisms - SNPs), que podem ser encontrados no genoma de indivíduos isoladamente ou em grupos de indivíduos de alguma população, sendo originados a partir de inserções, remoções ou substituições de bases. Alterações de um único nucleotídeo, como no caso de SNPs, podem modificar a produção de uma determinada proteína. O conjunto de tais alterações tende a provocar variações nas características dos indivíduos da espécie, que podem gerar alterações funcionais ou fenotípicas, que, por sua vez, implicam, geralmente, em consequências evolutivas nos indivíduos em que os SNPs se manifestam. Entre os vários desafios em bioinformática, encontram-se a descoberta e filtragem de SNPs em DNA genômico, etapas de relevância no pós-processamento da montagem de um genoma. Este trabalho propõe e desenvolve um método computacional capaz de filtrar SNPs em DNA genômico completo, utilizando genomas remontados a partir de sequências oriundas de plataformas de nova geração. O modelo computacional desenvolvido baseia-se em técnicas de aprendizado de máquina e inteligência computacional, com o objetivo de obter um filtro eficiente, capaz de classificar SNPs no genoma de um indivíduo, independente da plataforma de sequenciamento utilizada.