Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Roque, Gustavo Ribeiro de Oliveira
 |
Orientador(a): |
Fernández, Laura Senos Lacerda
 |
Banca de defesa: |
Mendoza, Alexander Eduardo Arbieto
,
Soares Junior, Regis Castijos
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Mestrado Acadêmico em Matemática
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/18145
|
Resumo: |
Nesse trabalho apresentamos duas das ferramentas que servem para determinar o comportamento hiperbólico dos campos vetoriais diferenciáveis e não diferenciáveis que preservam elemento de volume definidos sobre variedades riemannianas de dimensão 3 (suaves compactas e conexas), os quais respectivamente chamaremos expoente de Lyapunov “clássico"e novo expoente de Lyapunov. Mostraremos algumas das semelhanças e diferenças que estes apresentam: a invariância do novo expoente de Lyapunov ao longo da órbita de quase todo ponto em M e a densidade do conjunto de campos diferenciáveis com expoente de Lyapunov zero no conjunto dos campos de classe C 0 Lipschitz que preservam elemento de volume. |