PRED-INTER: automatic prediction of pedagogical interventions
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://doi.org/10.34019/ufjf/di/2022/00238 https://repositorio.ufjf.br/jspui/handle/ufjf/14652 |
Resumo: | Acompanhar estudantes em ambiente virtual de aprendizagem para verificar quem necessita de ajuda é uma tarefa que demanda bastante tempo. Considerando que em muitos casos o número de alunos por tutor é elevado, essa tarefa acaba se tornando inviável. Durante a pesquisa foram encontrados trabalhos que auxiliam tutores, porém muitas abordagens utilizam dados que estão vinculados ao ambiente virtual de aprendizagem ou ao curso, o que dificulta encontrar uma solução genérica. Portanto, este trabalho busca preencher essa lacuna propondo contribuir para a detecção automática de intervenção pedagógica, colaborando para minimizar problemas durante o processo de ensino aprendizagem on line. Foi projetada uma arquitetura para gerar automaticamente intervenções pedagógicas, identificando atributos implícitos presentes nas mensagens de alunos postadas através de interações no ambiente virtual de aprendizagem. Com base nos atributos sentimento, urgência e confusão é possível inferir como o aluno estava se sentindo ao postar a mensagem. São então aplicadas regras semânticas que selecionam a intervenção pedagógica adequada para atender o aluno. A dissertação traz três contribuições principais, a primeira é a arquitetura chamada PRED-INTER, desenvolvida para funcionar de maneira autonoma realizando intervenções pedagógicas. Segunda, desenvolvemos modelos preditivos que realizam a classificação dos atributos automaticamente, detectando sentimento, confusão e urgência nas mensagens de alunos. Os modelos foram treinados e avaliados, através de duas diferentes abordagens de deep learning, utilizando os dados do Stanford MOOCPosts Dataset. Terceira, foi desenvolvida uma ontologia capaz de armazenar as postagens dos alunos e seus atributos, que atravez das regras semânticas, detecta a intervenção pedagógica mais adequada. A avaliação da proposta foi feita através das análises dos modelos de classificação textual e da capacidade de identificar as intervenções pedagógicas. Os resultados alcançados pelos modelos gerados são bastante competitivos em comparação a outros trabalhos. Baseando-se no quantitativo de intervenções pedagógicas identificadas os resultados foram satisfatórios, pois mostram que é possível automatizar grande parte das intervenções, mantendo o suporte a alunos e tutores. |