Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Sinoara, Roberta Akemi |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-10102018-143520/
|
Resumo: |
Dada a grande quantidade e diversidade de dados textuais sendo criados diariamente, as aplicações do processo de Mineração de Textos são inúmeras e variadas. Nesse processo, a qualidade da solução final depende, em parte, do modelo de representação de textos adotado. Por se tratar de textos em língua natural, relações sintáticas e semânticas influenciam o seu significado. No entanto, modelos tradicionais de representação de textos se limitam às palavras, não sendo possível diferenciar documentos que possuem o mesmo vocabulário, mas que apresentam visões diferentes sobre um mesmo assunto. Nesse contexto, este trabalho foi motivado pela diversidade das aplicações da tarefa de classificação automática de textos, pelo potencial das representações no modelo espaço-vetorial e pela lacuna referente ao tratamento da semântica inerente aos dados em língua natural. O seu desenvolvimento teve o propósito geral de avançar as pesquisas da área de Mineração de Textos em relação à incorporação de aspectos semânticos na representação de coleções de documentos. Um mapeamento sistemático da literatura da área foi realizado e os problemas de classificação foram categorizados em relação à complexidade semântica envolvida. Aspectos semânticos foram abordados com a proposta, bem como o desenvolvimento e a avaliação de sete modelos de representação de textos: (i) gBoED, modelo que incorpora a semântica obtida por meio de conhecimento do domínio; (ii) Uni-based, modelo que incorpora a semântica por meio da desambiguação lexical de sentidos e hiperônimos de conceitos; (iii) SR-based Terms e SR-based Sentences, modelos que incorporam a semântica por meio de anotações de papéis semânticos; (iv) NASARIdocs, Babel2Vec e NASARI+Babel2Vec, modelos que incorporam a semântica por meio de desambiguação lexical de sentidos e embeddings de palavras e conceitos. Representações de coleções de documentos geradas com os modelos propostos e outros da literatura foram analisadas e avaliadas na classificação automática de textos, considerando datasets de diferentes níveis de complexidade semântica. As propostas gBoED, Uni-based, SR-based Terms e SR-based Sentences apresentam atributos mais expressivos e possibilitam uma melhor interpretação da representação dos documentos. Já as propostas NASARIdocs, Babel2Vec e NASARI+Babel2Vec incorporam, de maneira latente, a semântica obtida de embeddings geradas a partir de uma grande quantidade de documentos externos. Essa propriedade tem um impacto positivo na performance de classificação. |