Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Corrêa Neto, Sérgio
 |
Orientador(a): |
Santos, Laércio José dos
 |
Banca de defesa: |
Koiller, Jair,
Patrão, Mauro Moraes Alves |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Mestrado Acadêmico em Matemática
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/11210
|
Resumo: |
Nesse trabalho estudamos a dinâmica de fluxos induzidos por transformações lineares de espaços vetoriais de dimensão finita em espaços projetivos, chamados de translações. A ideia é descrever as componentes de Morse, da decomposição de Morse mais fina do fluxo, assim como os conjuntos recorrente e recorrente por cadeias. Isso é feito por meio das componentes de Jordan da decomposição de Jordan multiplicativa do fluxo. Ainda, estudamos o fibrado tangente ao espaço projetivo e subfibrados vetoriais à ele que caracterizam a restrição do fibrado tangente à cada componente de Morse. Com esse estudo iremos demonstrar que as componentes de Morse, da decomposição de Morse mais fina, são normalmente hiperbólicas. A generalização desse resultado, estudado sobre variedades flag, é abordado nos artigos [5] e [20] por meio da linguagem da Teoria de Lie semissimples. Uma vez que espaços projetivos são exemplos de variedades flag o estudo deste trabalho serve de exemplo dessa teoria, cujo desenvolvimento é matricial, e não requer os mesmos argumentos de Teoria de Lie semissimples. |