Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Oliveira, Relton Romeis de
 |
Orientador(a): |
Lima, Eliana Martins
 |
Banca de defesa: |
Lima, Eliana Martins,
Alonso, Antonio,
Taveira, Stephânia Fleury |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciências Farmacêuticas (FF)
|
Departamento: |
Faculdade Farmácia - FF (RG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/3108
|
Resumo: |
This work describes the development and characterization of magnetic solid lipid nanoparticles (SLNMP) containing paclitaxel for magnetohyperthermia applications. Magnetic nanoparticles were prepared by coprecipitation of Fe(II) and Fe(III) salts in an alkaline medium. SLNMP containing paclitaxel were prepared by emulsification – solvent diffusion. Characterization of the nanostructured system included morphology analysis, average diameter and size distribution, encapsulation efficiency for paclitaxel, stability and magnetic properties of magnetometry and magnetohyperthermia. Magnetic SLNMP containing paclitaxel exhibited an average diameter of 200nm with a polydispersity index of 0,189; which was confirmed by Atomic Force Microscopy. Stability studies conducted with lyophilized samples showed a decrease of approximately 15% in the amount of encapsulated paclitaxel in 30 days. Magnetometry data confirmed the superparamagnetic behavior of the nanocarriers and magnetohyperthermia effect was demonstrated by an increase of 25°C of the temperature of the nanocarrier. A three fold increase in the drug release rate was obtained when the temperature was raised from 25 to 43°C in the in vitro release assay. This indicated that temperature increase acts as a trigger mechanism for drug release, allowing the preparation of nanostructured controlled drug delivery systems controlled by magnetohyperthermia. |