Aplicação do polinômio de Taylor na aproximação da função Seno

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Curi Neto, Emilio lattes
Orientador(a): Silva, Maxwell Lizete da lattes
Banca de defesa: Silva, Maxwell Lizete da, Silva, Sílvia Cristina Belo e, Tonon, Durval José
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em PROFMAT (RG)
Departamento: Instituto de Matemática e Estatística - IME (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/3493
Resumo: In this work the main goal is focused on applying the theory of Taylor polynomial approximations applied on the trigonometric function defined by f : [0; 2 ] ! R, where f(x) = sin(x). To achieve this goal, eight sections were developed, in which initially a reflection on the problem and the need to obtain the values in this respect in that it is wide angle measure x is presented. Is presented and subsequently treated a problem involving the movement of a pendulum, which uses the approximation sin(x) x where x belongs to a certain range. In the sections that follow a literature review of the theories of differential and integral calculus is presented, and the related theory of Taylor approximation of functions by polynomials. Later we used these theories to analyze and determine polynomials approximating the function f(x) = sin(x) in a neighborhood of the point x = 0, and estimate the error when we applied these approaches. At this time the error occurred due to the approach used in the pendulum problem was also analyzed. Finally a hint of practice to be held in the classroom using the theories treated here as well as the study of the problem of heat transfer in a bar through the theory of Fourier activity is presented.