Bifurcações de campos vetoriais em duas zonas com simetria

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Castro, Ubirajara José Gama de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Instituto de Matemática e Estatística - IME (RG)
Brasil
UFG
Programa de Pós-graduação em Matemática (IME)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/8083
Resumo: Neste trabalho, estudamos campos vetoriais em duas zonas reversíveis e campos vetoriais em duas zonas equivariantes. Nosso resultado principal é a classificação das singularidades simétricas de codimensões 0, 1 e 2 de tais campos vetoriais. Mais precisamente, no caso reversível em R3, onde a dimensão da variedade de pontos fixos da involução associada ao campo vetorial é 2, apresentamos todos os diagramas de bifurcação das singularidades de codimensão 1 e 2, descrevendo as mudanças no comportamento das singularidades simétricas e das tangências do campo vetorial com a variedade de transição S, de acordo com a variação do parâmetro de bifurcação. Mostramos também a existência de cilindros invariantes e, nesse caso, fazendo pequenas perturbações determinamos variedades invariantes que persistiram e determinamos o número de ciclos limites que surgiram. Quando o campo vetorial definido em duas zonas é equivariante, a dinâmica é enriquecida com o surgimento do campo vetorial deslizante e também fazemos um estudo local e a classificação das singularidades (e pseudossingularidades) de codimensões 0, 1 e 2. Mostramos a existência de órbitas homoclínicas deslizantes e que esse é um fenômeno de codimensão 1 e devido à simetria do campo vetorial equivariante, teremos um duplo Shilnikov deslizante.