Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Barboza, Marcelo Bezerra
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Pina, Romildo da Silva
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Corro, Armando Mauro Vasquez,
Leandro Neto, Benedito,
Manfio, Fernando,
Marrocos, Marcus Antônio Mendonça,
Pina, Romildo da Silva |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Matemática (IME)
|
Departamento: |
Instituto de Matemática e Estatística - IME (RG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/9570
|
Resumo: |
This work presents a two step procedure that is virtually capable of producing an infinite number of exact solutions to Einstein's equation of a perfect fluid on a static manifold. These steps could roughly be described as: 1) classifying the symmetries of the referred equation that convert it into a second order non linear ordinary differential equation of very specific nature -- whose solutions are a whole lot easier to come up with than those of the original problem, and 2) solving this ordinary equation -- which quite explains the need for the word `virtually' above, since not all solutions of the ordinary equation are known to its exact form. Finally, in the last chapter, we utilize a Theorem due to Liouville to determine the rigid motions of Riemannian metrics on euclidean space that do admit symmetries in a translational group and also belong to the conformal class of the flat metric. |