Geometria extrínseca de campos de vetores em R3

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Gomes, Alacy José lattes
Orientador(a): Garcia, Ronaldo Alves lattes
Banca de defesa: Garcia, Ronaldo Alves, Tello, Jorge Manuel Sotomayor, Mello, Luis Fernando de osorio, Tari, farid, Carneiro, Mario Jorge Dias
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Matemática (IME)
Departamento: Instituto de Matemática e Estatística - IME (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/8636
Resumo: In this work we first consider regular vector fields : R3 ! R3 and its orthogonal distribution of planes. We present a characterization of the normal curvature associated to and the system of implicit differential equations 2(D (dr); dr; ) + h rot( ); i hdr; dri = 0; hdr; i = 0; which define two one-dimensional singular and orthogonal foliations, which we call by principal foliations and whose leaves are the principal lines of the distribution . Next we describe the configurations of the principal foliations in a neighborhood of the generic singular points that constitutes a regular curve in R3, which are denoted by Darbouxian umbilic partially points and semi-Darbouxian. We proceed by studying the stability of the closed principal lines and we also present a Kupka- Smale genericity result. To conclude, we study the structure of the singularities of the principal foliations in a neighborhood of a singular hyperbolic point of the vector field .