Transformada da incerteza puramente numérica para a avaliação de incertezas

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Brito Junior, Ademir Alves de lattes
Orientador(a): Brito, Leonardo da Cunha lattes
Banca de defesa: Brito, Leonardo da Cunha lattes, Rocha, Adson Silva, Ribeiro, Cacilda de Jesus
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Engenharia Elétrica e da Computação (EMC)
Departamento: Escola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/7684
Resumo: In this work, a numerical version of Unscented Transform was developed. In the developed approach, any probability distributions can be mapped by means of linear or non-linear functions, thus allowing fast acquisition of the probability distributions of the outputs/ simulation model responses, or more specifically, the evaluation of the uncertainty model. For practical purposes of distribution mapping, the computational cost is considerably lower than that demanded by the Monte Carlo method, which is based on a massive random sampling, thus presenting high computational cost. The application in Biomechanics problems shows the efficiency of the proposed method.