Methods for vector optimization: trust region and proximal on riemannian manifolds and Newton with variable order
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Goiás
Instituto de Matemática e Estatística - IME (RG) Brasil UFG Programa de Pós-graduação em Matemática (IME) |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.bc.ufg.br/tede/handle/tede/7791 |
Resumo: | Neste trabalho, analisaremos três tipos de métodos para resolver problemas de otimização vetorial em diferentes tipos contextos. Primeiro, apresentaremos o método da Região de Confiança para resolver problemas multiobjetivo no contexto Riemanniano, o qual recupera o método da Região de Confiança clássica para minimizar funções escalares. Sob determinadas suposições, mostraremos que cada ponto de acumulação das sequências geradas pelo método, se houver, é Pareto crítico. Em seguida, o método do ponto proximal para otimização vetorial e sua versão inexata serão estendidos do espaço Euclidiano para o contexto Riemanniano. Sob adequados pressupostos sobre a função objetiva, a boas definições dos métodos serão estabelecidos. Além disso, a convergência de qualquer sequência gerada, para um ponto fracamente eficiente, é obtida. O último método a ser investigado é o método de Newton para resolver o problema de otimização vetorial com respeito a estruturas de ordem variável. Estruturas de ordem variável são aplicações ponto-conjunto cujas imagens são cones que para cada elemento associa uma ordem. Nesta análise, provaremos a convergência da sequência gerada pelo algoritmo do método de Newton e, além disso, também obteremos a taxa de convergência sob estruturas de ordem variável satisfazendo adequadas hipóteses. |