Estratégias para uso eficiente de recursos em centros de dados considerando consumo de CPU e RAM

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Castro, Pedro Henrique Pires de lattes
Orientador(a): Cardoso, Kleber Vieira lattes
Banca de defesa: Cardoso, Kleber Vieira, Corrêa, Sand Luz, Costa, Fábio Moreira, Granville, Lisandro Zambenedetti
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação (INF)
Departamento: Instituto de Informática - INF (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/4124
Resumo: Cloud computing is being consolidated as a new distributed systems paradigm, offering computing resources in a virtualized way and with unprecedented levels of flexibility, reliability, and scalability. Unfortunately, the benefits of cloud computing come at a high cost with regard to energy, mainly because of one of its core enablers, the data center. There are a number of proposals that seek to enhance energy efficiency in data centers. However, most of them focus only on the energy consumed by CPU and ignore the remaining hardware, e.g., RAM. In this work, we show the considerable impact that RAM can have on total energy consumption, particularly in servers with large amounts of this memory. We also propose three new approaches for dynamic consolidation of virtual machines (VMs) that take into account both CPU and RAM usage. We have implemented and evaluated our proposals in the CloudSim simulator using real-world traces and compared the results with state-of-the-art solutions. By adopting a wider view of the system, our proposals are able to reduce not only energy consumption but also the number of SLA violations, i.e., they provide a better service at a lower cost.