Otimização multiobjetivo para seleção simultânea de variáveis e objetos em cromossomo duplo de representação inteira para calibração multivariada

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Bastos, Hélios Kárum de Oliveira lattes
Orientador(a): Soares, Anderson da Silva lattes
Banca de defesa: Soares, Anderson da Silva, Sanches, Danilo Sipoli, Laureano, Gustavo Teodoro
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação (INF)
Departamento: Instituto de Informática - INF (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/8094
Resumo: Multiobjective Optimization for feature and samples selection in double chromosome of integer representation and variable size for multivariate calibration} In several problems of regression, classification, prediction, approximation Optimization, the original data contain a large number of variables to obtain a better representation of the problem under consideration. However, a significant part of the variables may be irrelevant and redundant from the point of view of machine learning. Indeed, one of the challenges to be overcome is a selection of a subset of variables that has the best perform. One of the breakthroughs in this type of problem is the use of a multiobjective formulation that avoids the overlap of the model to the training data set. Another important point is the process of choosing the objects to be used in the learning stage. Generally, a selection of variables and treatment objects are treated separately and without dependence. This project proposes a multiobjective modeling to select variables and objects simultaneously using a genetic integer representation algorithm with variable size chromosomes. It is expected that a simultaneous selection of objects and variables on a multiobjective context produce better results in a traditional approach. As a case study this work utilized an analysis of near infrared (NIR) material on oil samples for the purpose of estimating the concentration of an interest properties such set was used in the competition conducted at the International Diffuse Reflectance Conference (IDRC) in the year 2014.