Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Souza, Lucas Alcântara
 |
Orientador(a): |
Soares, Anderson da Silva
 |
Banca de defesa: |
Soares, Anderson da Silva,
Cândido Júnior, Arnaldo,
Galvão Filho, Arlindo Rodrigues |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação (INF)
|
Departamento: |
Instituto de Informática - INF (RG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/12072
|
Resumo: |
In practical scenarios, a speaker verification model system must be able to identify a person given audios of any durations. However, existing speaker verification systems have low performance when dealing with short-length audios. To face this problem, the MLVL (Meta-Learning Variable-Length) approach was proposed, which consists of using audios with different durations within the same episode in the meta-learning of a prototypical network. The objective is to become text-independent speaker verification more robust to the context in which the verification audio is short-length. Models trained with the MLVL approach were evaluated in three different scenarios of short-length audios, obtaining 2.55% as the lowest EER (Equal Error Rate) value. Evaluating such models in audios with longer durations, the lowest EER value obtained was 2.40%. The results surpassed those obtained by several studies in the same scenarios, demonstrating the potential practical application of the proposed MLVL approach in a voice biometrics system. |