Reflexo pupilar à luz como biomarcador para identificação de glaucoma: avaliação comparativa de redes neurais e métodos de aprendizado de máquina

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Pinheiro, Hedenir Monteiro lattes
Orientador(a): Costa, Ronaldo Martins da lattes
Banca de defesa: Costa, Ronaldo Martins da, Matsumoto, Mônica Mitiko Soares, Camilo, Eduardo Nery Rossi, Papa, João Paulo, Barbosa, Rommel Melgaço
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação (INF)
Departamento: Instituto de Informática - INF (RMG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/13432
Resumo: The study of retinal ganglion cells, their photosensitivity characteristics, and their relationship with physical and cognitive processes has driven research on the pupillary reflex. Controlled by the Autonomic Nervous System (ANS), dilation (mydriasis) and contraction (miosis) are involuntary reflexes. Variations in pupil diameter may indicate physical or cognitive changes in an individual. For this reason, the pupillary reflex has been considered an important biomarker for various types of diagnoses. This study aimed to improve the automated identification of glaucoma using data from the pupillary light reflex. A comparative analysis between neural networks and classical techniques was performed to segment the pupillary signal. In addition, the performance of various data processing methods was evaluated, including filtering techniques, feature extraction, sample balancing, and feature selection, analyzing their effects on the classification process. The results show an accuracy of 73.90% in the overall classification of glaucoma, 98.10% for moderate glaucoma classification, and 98.73% for severe glaucoma, providing insights and guidelines for glaucoma screening and diagnosis through the signal derived from the pupillary light response