Previsão de Vazões Naturais Diárias Afluentes ao Reservatório da UHE Tucuruí Utilizando a Técnica de Redes Neurais Artificiais

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: FERREIRA, Carlos da Costa lattes
Orientador(a): CRUZ JÚNIOR, Gélson da lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Mestrado em Engenharia Elétrica e de Computação
Departamento: Engenharia
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tde/970
Resumo: The forecast of natural flows to hydroelectric plant reservoirs is an essential input to the planning and programming of the SIN´s operation. Various computer models are used to determine these forecasts, including physical models, statistical models and the ones developed with the RNA´s techniques. Currently, the ONS performs daily forecasts of natural flows to the UHE Tucuruí based on the univariate stochastic model named PREVIVAZH, developed by Electric Energy Research Center - Eletrobras CEPEL. Throughout the last decade, several papers have shown evolution in the application of neural networks methodology in many areas, specially in the prediction of flows on a daily, weekly and monthly basis. The goal of this dissertation is to present and calibrate a model of natural flow forecast using the RNA´s methodology, more specifically the NSRBN (Non-Linear Sigmoidal Regression Blocks Networks) (VALENCA; LUDERMIR, 2001), on a time lapse from 1 to 12 days forward to the Tucuruí Hydroelectric Plant, considering the hydrometric stations data located upstream from it s reservoir. In addition, a comparative analysis of results found throughout the calibrated neural network and the ones released by ONS is performed. The results show the advantage of the methodology of artificial neural networks on autoregressive models. The Mean Absolute Percentage Error - MAPE values obtained were, on average, 48 % lower than those released by the ONS.