Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Camargo, Fernando Henrique Fernandes de
 |
Orientador(a): |
Soares, Anderson da Silva
 |
Banca de defesa: |
Soares, Anderson da Silva,
Galvão Filho, Arlindo Rodrigues,
Vieira, Flávio Henrique Teles,
Gomes, Herman Martins,
Lotufo, Roberto de Alencar |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação (INF)
|
Departamento: |
Instituto de Informática - INF (RMG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/13342
|
Resumo: |
This thesis introduces a novel approach to address high-dimensional multiclass classification challenges, particularly in dynamic environments where new classes emerge. Named Future-Shot, the method employs metric learning, specifically triplet learning, to train a model capable of generating embeddings for both data points and classes within a shared vector space. This facilitates efficient similarity comparisons using techniques like k-nearest neighbors (\acrshort{knn}), enabling seamless integration of new classes without extensive retraining. Tested on lab-of-origin prediction tasks using the Addgene dataset, Future-Shot achieves top-10 accuracy of $90.39\%$, surpassing existing methods. Notably, in few-shot learning scenarios, it achieves an average top-10 accuracy of $81.2\%$ with just $30\%$ of the data for new classes, demonstrating robustness and efficiency in adapting to evolving class structures |