Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Dal Berto, Lucas Matheus de Lima
 |
Orientador(a): |
Silva, Jhone Caldeira
 |
Banca de defesa: |
Silva, Jhone Caldeira,
Rodrigues, Paulo Henrique De Azevedo,
Lima, Igor dos Santos |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Matemática (IME)
|
Departamento: |
Instituto de Matemática e Estatística - IME (RG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/11275
|
Resumo: |
Let A be a group acting on a group G. It is known that some properties of G are influenced by CG(A), for example, suppose that a Frobenius group FH acts on a finite group G, we known that if CG(F) = 1 and CG(H) is nilpotent, then G is nilpotent and, adding the hypothesis that F is cyclic, we have that the nilpotency class of G is bounded in terms of the order of H and the nilpotency class of CG(H). Until now, it was not evident, considering the hypotheses mentioned above, if the nilpotency class of G could be made independent of the order of H. In this dissertation, we show that exists a family G of finite nilpotent groups, of unbounded nilpotency class, such that each group in G admits a metacyclic Frobenius group of automorphisms so that CG(F) = 1 and CG(H) is abelian, thus evidencing the essential dependency of the order of H in the nilpotency class of G. |