Condição de Nilpotência para Grupos Localmente Finitos de expoente p e Álgebras de Lie (p-1)- Engel de Característica p (ou 0)

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: CARVALHO, Lucimeire Alves de lattes
Orientador(a): LIMA, Aline de Souza lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Mestrado em Matemática
Departamento: Ciências Exatas e da Terra
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tde/1940
Resumo: Let P be a locally finite group of prime exponent p, admitting a finite soluble automorphism group G of order n coprime to p. In this work we study the influence of the centralizers of the automorphisms in G on the structure of P. In this sense we show that if CP(G), the subgroup of fixed points is soluble of derived length d, then P is nilpotent of class bounded in terms of p, n and d. It will be also shown that if a (p-1)-Engel Lie algebra L of characteristic p (or 0) admits a finite soluble automorphism group G of order n coprime to the characteristic of L, such that CL(G), the subalgebra of fixed points, is soluble of derived length d, then the Lie algebra L is nilpotent of class bounded in terms of p, n and d.