Aprendizado de máquina para análise de recaída para depressão em pacientes com transtorno bipolar

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Borges Júnior, Renato Gomes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Instituto de Informática - INF (RG)
Brasil
UFG
Programa de Pós-graduação em Ciência da Computação (INF)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/9024
Resumo: A recaída para depressão em pacientes com Transtorno Afetivo Bipolar (TAB) atinge taxas de 70% de recorrência nos 4 primeiros anos de tratamento e pode causar uma drástica redução na qualidade de vida e levar até o suicídio. O TAB é uma desordem do humor caracterizada por episódios recorrentes de depressão ou mania. Para estudar o transtorno e encontrar tratamentos mais eficientes, o Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) foi criado pela Escola de Medicina de Harvard. O STEP-BD é um conjunto de dados composto por informações de 4.360 pacientes com TAB, o qual pode ser considerado atualmente uma das mais completas bases de dados em termos de escopo. Vários estudos foram desenvolvidos para descobrir tratamentos mais eficientes para prevenir recaídas. Porém, a maioria destes estudos usaram apenas métodos clássicos de estatística, principalmente com o objetivo de medir a sua correlação com atributos específicos. Este trabalho apresenta uma análise do uso de algoritmos de aprendizado de máquina para encontrar padrões relacionados a recaída para depressão no TAB com o uso de dados longitudinais providos pelo STEP-BD. Estes dados longitudinais incluem 148 atributos coletados em um total de 50.987 visitas de pacientes espalhadas ao longo de semanas durante anos. Assim, diversos experimentos foram conduzidos neste trabalho e os resultados mostram que os algoritmos obtiveram desempenho limitado. Foi possível perceber que atributos relacionados ao estado de humor de depressão e mania, coletados pelo STEP-BD, não podem ser usados propriamente para predizer recaída para depressão antes de sua ocorrência, sendo apropriados apenas para uso como um indicador que o paciente já se encontra no estado de depressão.