Otimização de sistemas hidrotérmicos de geração por meio de meta-heurísticas baseadas em enxame de partículas

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Deus, Guilherme Resende lattes
Orientador(a): Cruz Júnior, Gélson da lattes
Banca de defesa: Cruz Júnior, Gélson da, Nepomuceno, Leonardo, Silva, Karina Rocha Gomes da
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Engenharia Elétrica e da Computação (EMC)
Departamento: Escola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/7530
Resumo: The objective of this work is to find reasonable solutions to the problem of optimization of hydrothermal generating systems by means of metaheuristics based on particle swarms. The proposed problem is complex, dynamic, nonlinear and presents some stochastic variables. The study consisted of the implementation of particle swarm algorithms, more specifically the variants of the Particle Swarm Optimization (PSO) algorithm: LSSPSO, ABeePSO and KFPSO. The algorithms were run in a mill simulator containing data from eight National Interconnected System mills during the five year period. The results were compared with the studies using the Nonlinear Programming (NLP) algorithm, and it was concluded that although the presented meta-heuristics were able to obtain a Final Storage Energy value equal to NLP, they did not have a generation cost Equivalent to or less than the Nonlinear Programming method.