Otimização natural multiobjetivo como ferramenta para desvio mínimo de pontos de operação considerando restrições de segurança

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Freire, Rene Cruz
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Niterói
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://app.uff.br/riuff/handle/1/3927
Resumo: Um dos temas de alta relevância para a sociedade atual é a qualidade do suprimento de energia elétrica, que deve ser ininterrupto, seguro e econômico. Para tal, é primordial que o sistema de potência esteja preparado para um possível defeito de algum equipamento da rede, mantendo a operação dentro dos patamares seguros, evitando os blecautes e todas as suas consequências para a sociedade. Isso pode ser feito através do redespacho das unidades geradoras, de modo a encontrar um ponto de operação que concilie segurança e economicidade, dois objetivos conflitantes, enquanto busca se afastar o mínimo possível do ponto de operação previamente estabelecido, via planejamento eletroenergético, para o sistema de potência em questão. Trata-se de uma abordagem multiobjetiva do Fluxo de Potência Ótimo com Restrições de Segurança (FPORS) que pode ser solucionada com uma abordagem de Computação Evolucionária (CE) com viés multiobjetivo. Neste trabalho, foram implementadas e comparadas duas meta-heurísticas evolutivas multiobjetivo: Nondominated Sorting Genetic Algorithm II (NSGA-II) e o Multi-objective Evolutionary Particle Swarm Optimization (MOEPSO). Os resultados dessas heurísticas também foram comparados com a abordagem mono-objetivo do mesmo problema. Os algoritmos foram implementados no MATLAB® e testados em um sistema-teste que simula as condições do Sistema Interligado Nacional (SIN). As heurísticas multiobjetivo foram comparadas através da metodologia de análise da Fronteira de Pareto (FP), onde é analisado qual método concilia melhor os objetivos de economia e segurança. Na primeira análise o NSGA-II saiu-se melhor, entretanto após a implementação de melhorias no algoritmo, o MOEPSO mostrou desempenho superior na segunda análise. Nas duas análises, o viés multiobjetivo mostrou-se superior ao mono-objetivo, na comparação através do critério de agregação de objetivos. Em relação ao tempo de simulação de cada método, o MOEPSO foi superior na primeira análise, já na segunda análise foi implementado um refinamento baseado no Fluxo de Potência Linearizado no FPORS, que baixou o tempo de simulação das duas heurísticas multiobjetivas em comparação com a primeira análise, e o MOEPSO teve o menor tempo de simulação. Na comparação com o viés mono-objetivo, apenas o NSGA-II teve tempo médio de simulação maior que o método mono-objetivo na primeira análise. Na segunda análise, todas as heurísticas multiobjetivo possuíam tempo de simulação menores que o método mono-objetivo.