Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Santana, Josefa Genyle do Nascimento |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://app.uff.br/riuff/handle/1/30125
|
Resumo: |
Neste trabalho, definiremos estruturas projetivas singulares do tipo fuchsiana em superfícies e provaremos o teorema de existência de estruturas projetivas singulares do tipo fuchsiana com representação de monodromia p ⇢ : ⇡ (S* )⇢ PSL2 (C) dada, onde S* é uma superfície de Riemann de tipo finito, e analisaremos a relação entre estruturas projetivas com mesma monodromia e o flip de uma fibra. De um ponto de vista analítico, calcularemos a derivada Schwarziana das cartas projetivas singulares do tipo fuchsiana e soluções de equações Schwarzianas dada uma diferencial quadrática meromorfa com polo duplo. Faremos um estudo local da geometria/ topologia da aplicação developing que define a estrutura projetiva ao redor de uma cúspide e estenderemos a cirurgia de movimento de pontos de ramificação quando uma das singularidades e do tipo fuchsiana. Por fim, daremos interpretações álgebro-geométricas para essas estruturas projetivas onde obteremos fórmulas envolvendo invariantes topológicos da superfície e invariantes analíticos da folheação e fibrado. |