Resolução local do mapa de Abel para curvas circulares e com duas componentes

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Díaz, Israel Manuel Acha
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://app.uff.br/riuff/handle/1/28948
Resumo: O mapa de Abel de grau d de uma curva lisa é um morfismo que associa a uma dupla de pontos da curva, o feixe invertível induzido por esses d pontos. Um problema estudado nos últimos anos é a construção de mapas de Abel para curvas singulares. Nesta tese mostraremos como construir mapas (locais) de Abel para curvas nodais circulares e com duas componentes. Construímos esses mapas através de refinamentos de hipercubos.