Formulação do método dos elementos de contorno com dupla reciprocidade usando elementos de ordem superior aplicada a problemas de campo escalar generalizado

Detalhes bibliográficos
Ano de defesa: 1999
Autor(a) principal: Bulcão, André
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Mecânica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Mecânica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
621
Link de acesso: http://repositorio.ufes.br/handle/10/4162
Resumo: The formulation and application of the Boundary Element Method to problems embodied by the so called Scalar Field Theory are presented. In the formulation, it is used the Dual Reciprocity Technique to treat domain integrals for which traditional procedures can not transform the integral equation into an algebraic equation linear system, only involving variables along the boundary. The Scalar Field Theory is widely applied to several Engineering areas, such as: Thermosciences, Fluid mechanics, Solid Mechanics, Electromagnetism, Corrosion, among others. In the presented applications, the problems are physically interpreted mainly though Heat Transfer and Solid Mechanics. Besides, several analysis of problems ruled by Laplaceís, Poissonís and Diffusion Equations are presented. Basically, aiming to estimate the Boundary Element Method performance, certain parameters - which influence its results, such as the refinement level used in the discretizations - are varied and different boundary element types are considered. For such, the obtained numerical solutions are compared with the analytical ones, or even with those originated by the application of other numerical methods. In some cases, it is drawn a parallel between the performance of the Boundary Element method with the Finite Element Method, or either with the Finite Volume Method.