Formulação do método dos elementos de contorno com dupla reciprocidade usando elementos de ordem superior aplicada a problemas de campo escalar generalizado
Ano de defesa: | 1999 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Espírito Santo
BR Mestrado em Engenharia Mecânica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Mecânica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufes.br/handle/10/4162 |
Resumo: | The formulation and application of the Boundary Element Method to problems embodied by the so called Scalar Field Theory are presented. In the formulation, it is used the Dual Reciprocity Technique to treat domain integrals for which traditional procedures can not transform the integral equation into an algebraic equation linear system, only involving variables along the boundary. The Scalar Field Theory is widely applied to several Engineering areas, such as: Thermosciences, Fluid mechanics, Solid Mechanics, Electromagnetism, Corrosion, among others. In the presented applications, the problems are physically interpreted mainly though Heat Transfer and Solid Mechanics. Besides, several analysis of problems ruled by Laplaceís, Poissonís and Diffusion Equations are presented. Basically, aiming to estimate the Boundary Element Method performance, certain parameters - which influence its results, such as the refinement level used in the discretizations - are varied and different boundary element types are considered. For such, the obtained numerical solutions are compared with the analytical ones, or even with those originated by the application of other numerical methods. In some cases, it is drawn a parallel between the performance of the Boundary Element method with the Finite Element Method, or either with the Finite Volume Method. |