Novos testes computacionais com a formulação com dupla reciprocidade do método dos elementos de contorno em problemas de dinâmica

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Sessa, Jeanderson Colodete
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Mecânica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Mecânica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
621
Link de acesso: http://repositorio.ufes.br/handle/10/4128
Resumo: This work presents and discusses numerical results of the Dual Reciprocity Boundary Element Method (BEM) applied to scalar dynamic problems, specifically related to wave propagation phenomena. The main purpose is to evaluate the efficacy of some resources used to improve the numerical performance of the Dual Reciprocity approach. The basic equations of elastodynamics are presented in the Navier Equation form; applied hereby to some specific scalar cases which were discussed in this dissertation. The development of the mathematical spatial term was accomplished using the theory of integral equations and the temporal term was developed by the Dual Reciprocity Technique. The temporal discretization was implemented using the step time scheme, with fictitious damping, to avoid complete response degradation, due to the spurious action of high modal components. Houbolt and Wilson-θ time marching schemes are tested and compared concerning accuracy in this work. The use of different kind of radial basis functions for the dual reciprocity interpolation procedure was evaluated. Effects of the mesh refinement, introduction of internal poles and time increment values were simulated. Numerical results were compared with analytical responses. The Goldberg and Chen procedure, based on global function increments in stationary cases, was applied and analyzed for dynamic problems and its results were compared with meshes with internal poles added.