Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
TAVEIRA, Paulo Ricardo Zambelli
 |
Orientador(a): |
MORAES, Carlos Henrique Valério de
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Itajubá
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação: Mestrado - Ciência e Tecnologia da Computação
|
Departamento: |
IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.unifei.edu.br/jspui/handle/123456789/2332
|
Resumo: |
O controle de gastos relacionado à energia elétrica vem apresentando um grande crescimento, principalmente em ambientes residenciais. O monitoramento das cargas elétricas acionadas e removidas de uma residência é realizado frequentemente através de smartplugs, fornecendo aos consumidores o intervalo de funcionamento e a potência consumida por cada equipamento. Apesar de uma solução prática de controle e redução de gastos de energia elétrica, possui um custo elevado devido à quantidade de medidores necessários. O problema do custo elevado pode ser contornado utilizando uma proposta de monitoramento de cargas não intrusivo (NILM), onde as medições de tensão e corrente são realizadas na entrada da residência, em contra partida demanda uma etapa extra de processamento. Nessa etapa extra, é necessário calcular a potência, identificar a ocorrência dos eventos e por fim, a identificar qual equipamento foi ligado ou desligado. As propostas desse trabalho foram utilizar um novo padrão de cálculo de potência proposto pela IEEE (1459-2010), a elaboração de um detector de evento do tipo heurístico utilizando janelas de análise flutuante para localização de zonas de estabilidade nos sinais de potência após indicação de uma variação de potência acima de um valor pré-determinado, testes da melhor forma de disposição dos dados do identificador de eventos para a identificação de qual carga foi adicionada ou removida do circuito monitorado, e otimização dos parâmetros do classificador Floresta Aleatória (RF-Random Forest) utilizando o algoritmo de otimização fogos de artifício (Fireworks Algorithm- FA). Os testes do identificador de eventos proposto e do classificador utilizado foram realizados no dataset BLUED, que contém dados coletados em uma residência norte-americana em um período de uma semana. Para os testes do classificador foram utilizados quatro formas diferentes de entrada de dados inicialmente, e posteriormente as duas formas que obtiveram melhores desempenhos foram utilizadas no processo de otimização do classificador. O desempenho do identificador de evento proposto foi comparado com outras publicação que utilizaram abordagens diferentes e obtiveram resultados satisfatórios. E os resultados das classificações foram comparadas entre si, por utilizarem formas de entrada de dados diferentes, e como também um classificador ideal, onde também foram observados uma melhora dos resultados quando comparados com os resultados de um classificador com parâmetros normalmente utilizados, um número maior de árvores foi utilizada em cada RF, mas com limitação na profundidade de cada árvore. E a importância das variáveis envolvidas no processo de classificação também foi calculada, destacando a importância da utilização do novo padrão de potência proposto pela IEEE. |