Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
RENÓ, Alex Nivaldo Alcântara
 |
Orientador(a): |
PABON, Juan José Garcia
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Itajubá
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação: Mestrado - Engenharia Mecânica
|
Departamento: |
IEM - Instituto de Engenharia Mecânica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.unifei.edu.br/jspui/handle/123456789/3872
|
Resumo: |
A hidreletricidade é a principal fonte de geração do sistema elétrico brasileiro e devido aos problemas hidrológicos observados recentemente e aos planos de expansão da matriz, o país busca tecnologias alternativas de energia, como usina de energia solar concentrada e planejamento para melhorar a eficiência do sistema. Sendo um exemplo, a usina solar de calha parabólica (PTC) é utilizada para produção de eletricidade e calor, simultaneamente. O presente trabalho desenvolve modelagem energética e térmica de usina PTC de 100 MW para a cidade de Itacarambi-MG. Nesta obra, o desempenho do coletor solar é melhorado considerando diferentes geometrias de aletas internas e utilização de nanofluidos como fluido de transferência térmica. Para tanto, foram propostos nove casos finais, incluindo, tubo liso, aleta longitudinal retangular, aleta longitudinal triangular, nanopartícula de óxido de magnésio (MgO) e nanopartícula de sílica (SiO2) com 2% de fração de volume. O Therminol-VP1 é escolhido como fluido de transferência de calor (HTF) do sistema. Através da ferramenta CFD são avaliados os principais parâmetros do problema, sendo eles: coeficiente de transferência de calor, fator de atrito, perda de pressão, trabalho de bombeamento, eficiência térmica e exergética do coletor. O melhor desempenho foi obtido para o caso com aletas longitudinais retangulares de tamanho de 25 mm e espessura de 4 mm, utilizando nanofluido MgO 2%. Para este caso, o HTC máximo foi de 1426, 8 W/m² K, enquanto a pressão e o fator de atrito tiveram um aumento percentual de 338,56% e 220%, respectivamente. A eficiência térmica máxima foi de 72,36% e exergética de 32,22%, o que representou uma melhoria de 5,6% e 5,3% em relação ao tubo de referência. O menor LCOE obtido variou de 0,02648 a 0,02746 euro kW/h. |