Otimização de modelos SARIMA-DEA com ensembles e delineamento de misturas

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: LEAL, Gustavo dos Santos lattes
Orientador(a): BALESTRASSI, Pedro Paulo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Itajubá
Programa de Pós-Graduação: Programa de Pós-Graduação: Doutorado - Engenharia de Produção
Departamento: IEPG - Instituto de Engenharia de Produção e Gestão
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifei.edu.br/jspui/handle/123456789/3697
Resumo: Realizar previsões acuradas é de suma importância para diversas áreas do conhecimento, como Economia, Gestão, Engenharias, Estatística etc. Existem várias abordagens para se realizar previsões: análise de séries temporais, análise de regressão, redes neurais artificiais etc. Contudo, um cuidado que todo pesquisador ou analista deve ter ao aplicar qualquer uma das referidas técnicas é o cuidado com o overfitting – que ocorre quando um determinado modelo possui tantos parâmetros que se ajusta bem ao conjunto de treino, mas prevê muito mal o conjunto de teste. Recentemente, técnicas de combinação de modelos estão em voga, uma vez que comprovadamente o ensemble de modelos faz com que as métricas de previsão sejam melhores. Entretanto, o problema do overfitting ainda pode estar presente nestes casos. Para contornar este problema, esta tese sugere a aplicação de um passo intermediário entre a seleção de modelos e a otimização dos pesos que é a utilização de um modelo de Análise por Envoltória de Dados adequado à presença de variáveis fracionadas para não ferir o pressuposto de convexidade. Para analisar este método, esta tese aplicará modelos de Box & Jenkins. Criam-se, portanto, Decision Making Units (DMUs) por meio de um Arranjo Fatorial Completo, modificando os parâmetros computacionais. Aplica-se a análise de supereficiência e retem-se as 4 DMUs com maiores índices de eficiência para posterior combinação por meio de otimização de Superfície de Resposta no contexto de Delineamento de Misturas. Propõe-se também a aplicação de técnicas estatística multivariadas para redução de dimensionalidade, a fim de tornar o problema computacionalmente menor. Para validar o método proposto, foi criado um estudo de simulação, comparando os resultados com o método Naive. A simulação mostrou que o método proposto nesta tese apresenta em média melhores resultados. Por fim, o método foi aplicado em séries de demanda de energia elétrica do Brasil e suas cinco regiões.