Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
VERMAAS, Luiz Lenarth Gabriel |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação: Doutorado - Engenharia Elétrica
|
Departamento: |
IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
|
País: |
Não Informado pela instituição
|
Link de acesso: |
https://repositorio.unifei.edu.br/jspui/handle/123456789/1335
|
Resumo: |
Esta tese trata do desenvolvimento de um algoritmo para aprendizado supervisionado capaz de extrair conhecimentos provenientes de tarefas de manobras veiculares realizadas por um motorista humano. Como o objetivo final e determinar o conhecimento do motorista de forma compreensível, este será representado por Sistema de Inferência Fuzzy (FIS) baseado no modelo Mamdani, por representar o problema de forma simples por meio da linguagem natural humana. O desenvolvimento de tal sistema e, na verdade, um problema de otimização inteira mista, onde se deseja mapear o relacionamento entre as entradas provenientes do sistema de aquisição de dados do veículo com as respostas fornecidas por um humano. A geração deste Sistema Fuzzy implica na geração de uma estrutura de regras fuzzy e funções de pertinência que representem adequadamente o conjunto de exemplos de treinamento. Assim, o problema e dividido em duas partes: uma responsável pelo aprendizado das regras e a outra responsável pela otimização das funções de pertinência. A implementação do algoritmo para solucionar este problema, aplica os conceitos de Sistema Imunológico Artificial baseado em Gradiente (GbAIS) com duas populações distintas de anticorpos: uma para aprendizagem da estrutura de regras e outra para otimização das funções de pertinência. Por meio do processo de coevolução das duas populações e possível: trocar informações entre elas, uma vez que as mesmas são interdependentes; evitar o surgimento de ótimos locais; e aumentar o fitness do sistema gerado. Para validar esta proposta, o FIS gerado e utilizado em uma aplicação de veículos inteligentes. O algoritmo foi testado inicialmente em um ambiente de simulação 3D e posteriormente em um veículo de passeio real. Os resultados obtidos para o problema de estacionamento em vaga paralela e navegação em um circuito com waypoints comprovaram a eficácia do algoritmo proposto. As principais contribuições desta tese são: 1) a utilização de técnicas de aprendizado supervisionado para geração automática de sistemas de controle de alto nível em veículos inteligentes, por ser um tema pouco pesquisado neste tipo de aplicação; 2) a proposta da Tabela de Regras Potencias (TRP) para pré-seleção de regras candidatas, conduzindo a redução do espaço de busca; e 3) a aplicação de CGbAIS, uma nova técnica baseada em população. |