Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
VILAS BOAS, Elias Ramos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação: Mestrado - Engenharia Elétrica
|
Departamento: |
IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
|
País: |
Não Informado pela instituição
|
Link de acesso: |
https://repositorio.unifei.edu.br/jspui/handle/123456789/1331
|
Resumo: |
Um dos maiores desafios que a robótica móvel autônoma enfrenta na atualidade é o problema da localização e mapeamento simultâneos, conhecido como SLAM. Esse problema surge por causa da complexidade da tarefa de navegar por um ambiente desconhecido e ao mesmo tempo capturar informações desse ambiente, construir um mapa e se localizar no mesmo. Os erros gerados pela imprecisão dos sensores, que se acumulam com o passar do tempo, utilizados para estimar o estado de localização e mapeamento impedem que sejam obtidos resultados confiáveis após longos períodos de navegação. Para resolver o problema descrito este trabalho apresenta um algoritmo de SLAM probabilístico onde, o algoritmo proposto procura eliminar esses erros resolvendo ambos os problemas simultaneamente, utilizando as informações de uma etapa para aumentar a precisão dos resultados alcançados na outra e vice versa. Para tal, é utilizado um mapa métrico para representar o ambiente em que o veículo esta inserido. Este mapa é construído de forma incremental utilizando a teoria de Bayes e a estimação da posição do veículo é feita por um Filtro α _ β e é corrigida por um método de sobreposição de obstáculo. Para demonstração da metodologia foi utilizado em um veículo autônomo inteligente. |