Órbitas Birkhoff na Ferradura Rotacional.

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: MARSON, Guilherme Porfírio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Programa de Pós-Graduação: Mestrado - Matemática
Departamento: IEPG - Instituto de Engenharia de Produção e Gestão
País: Não Informado pela instituição
Link de acesso: https://repositorio.unifei.edu.br/jspui/handle/123456789/887
Resumo: Neste trabalho, estudamos difeomorfismos de classe C¹ do anel com uma órbita homoclínica transversal K-rotacional a um ponto fixo hiperbólico. Primeiramente, recuperamos um resultado clássico de Poincaré, Birkhoff e Smale: Um ponto homoclínico implica a existência de uma ferradura topológica para alguma iterada. Além disso, obtemos informações interessantes sobre o comportamento rotacional das órbitas em um conjunto de Cantor invariante e maximal (chamado ferradura rotacional). Usando conjugação e dinâmica simbólica associada ao conjunto de Cantor não-errante da ferradura, provamos a existência de um intervalo de rotação não trivial I, e de incontáveis conjuntos de Cantor invariantes para cada número de rotação irracional em I. Finalizamos o trabalho caracterizando a codificação das órbitas Birkhoff da aplicação de duplicação em S¹, as quais implicam a existência de órbitas Birkhoff da ferradura rotacional.