Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
MARSON, Guilherme Porfírio |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação: Mestrado - Matemática
|
Departamento: |
IEPG - Instituto de Engenharia de Produção e Gestão
|
País: |
Não Informado pela instituição
|
Link de acesso: |
https://repositorio.unifei.edu.br/jspui/handle/123456789/887
|
Resumo: |
Neste trabalho, estudamos difeomorfismos de classe C¹ do anel com uma órbita homoclínica transversal K-rotacional a um ponto fixo hiperbólico. Primeiramente, recuperamos um resultado clássico de Poincaré, Birkhoff e Smale: Um ponto homoclínico implica a existência de uma ferradura topológica para alguma iterada. Além disso, obtemos informações interessantes sobre o comportamento rotacional das órbitas em um conjunto de Cantor invariante e maximal (chamado ferradura rotacional). Usando conjugação e dinâmica simbólica associada ao conjunto de Cantor não-errante da ferradura, provamos a existência de um intervalo de rotação não trivial I, e de incontáveis conjuntos de Cantor invariantes para cada número de rotação irracional em I. Finalizamos o trabalho caracterizando a codificação das órbitas Birkhoff da aplicação de duplicação em S¹, as quais implicam a existência de órbitas Birkhoff da ferradura rotacional. |