Previsão de curto prazo de cargas elétricas usando combinação de redes neurais artificiais e delineamento de experimentos

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: ROCHA, Franco Bassi lattes
Orientador(a): BALESTRASSI, Pedro Paulo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Itajubá
Programa de Pós-Graduação: Programa de Pós-Graduação: Doutorado - Engenharia Elétrica
Departamento: IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifei.edu.br/jspui/handle/123456789/2249
Resumo: É proposto neste trabalho uma nova abordagem para previsão de demanda de energia elétrica de curto prazo para subestações de distribuição de energia utilizando o ensemble de redes neurais artificiais. Nesse sentido, o principal objetivo desta abordagem é fazer previsões de uma mesma série temporal através de diferentes ferramentas que sozinhas são competentes para este tipo de problema e em seguida combinar as soluções, obtendo uma solução melhor em comparação a essas ferramentas utilizadas de forma individual. Para a construção do ensemble a metodologia de planejamento experimental (DOE) foi empregada inicialmente para identificar a influência de 6 fatores relacionados a parametrização da RNA e a partir do método de otimização desirability obter uma parametrização para determinar a arquitetura das redes neurais que formaram o ensemble. Na sequência, o método de otimização interseção normal a fronteira (NBI) aliado com a técnica de análise fatorial exploratória (baseado em planejamento com experimentos de mistura) foi utilizado para estabelecer um conjunto de soluções Pareto ótimas para a combinação das saídas produzidas pelas redes neurais, formando a saída do ensemble. Como critério de escolha, a razão máxima entre entropia de Shannon e erro percentual global foi utilizada e com base nos 72 dados deixados fora da amostra o ensemble de redes neurais artificiais apresentou melhores resultados comparados a cada rede individual.