Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
MASSELLI, Yvo Marcelo Chiaradia |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação: Doutorado - Engenharia Elétrica
|
Departamento: |
IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
|
País: |
Não Informado pela instituição
|
Link de acesso: |
https://repositorio.unifei.edu.br/jspui/handle/123456789/1548
|
Resumo: |
O processo de previsão é útil em diversas atividades humanas. É nele que se baseiam os desenvolvimentos futuros, as etapas de um planejamento e as verificações de disponibilidade dos sistemas. É sabido que quanto maior for o horizonte de previsão mais difícil se torna acertar os valores previstos face aos que realmente ocorrem. E mais, que a qualidade do processo de previsão está intimamente ligada à qualidade da base histórica dos dados disponível e da repetibilidade desse conjunto de dados. Esta tese apresenta um estudo sobre as principais técnicas de inteligência artificial, operando isoladamente ou em cooperação, de forma a compor poderoso sistemas híbridos. Estes são aplicados em problemas de modelagem e identificação de sistemas complexos das mais diversas naturezas. Em seguida é proposto um novo modelo, baseado em redes neurais polinomiais e logica difusa, otimizados pela técnica de otimização por enxame de partículas para a previsão de sistemas. Para a comprovação da viabilidade, são realizados diversos testes envolvendo todas técnicas apresentadas, e os resultados são comparados com os obtidos pelo método proposto. |